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Abstract

The singularity of cylindrical or spherical coordinate systems at the origin imposes certain regularity conditions on the
spectral expansion of any infinitely differentiable function. There are two efficient choices of a set of radial basis functions
suitable for discretising the solution of a partial differential equation posed in either such geometry. One choice is methods
based on standard Chebyshev polynomials; although these may be efficiently computed using fast transforms, differentia-
bility to all orders of the obtained solution at the origin is not guaranteed. The second is the so-called one-sided Jacobi
polynomials that explicitly satisfy the required behavioural conditions. In this paper, we compare these two approaches
in their accuracy, differentiability and computational speed. We find that the most accurate and concise representation
is in terms of one-sided Jacobi polynomials. However, due to the lack of a competitive fast transform, Chebyshev methods
may be a better choice for some computationally intensive timestepping problems and indeed will yield sufficiently
(although not infinitely) differentiable solutions provided they are adequately converged.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a cylindrical or spherical geometry, the origin is a singular point. This is manifested not only in the con-
vergence of grid points in many numerical schemes severely restricting tractable timesteps, but in certain reg-
ularity conditions that any solution must satisfy in order to remain differentiable to all orders at the origin.
This issue may be regarded in a positive or negative light depending on the point of view. On the one hand,
one may be concerned that any numerically derived function might not be sufficiently differentiable (and there-
fore will not be physically meaningful) at the origin; on the other, the extra constraints may be exploited to
hone the numerical scheme and consequently speed up convergence. A thorough review of these issues may
be found in [1].
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In a 2D polar geometry, any smooth (i.e. infinitely differentiable) function f(r, /), depending on the radius
r 2 [0,1] and polar angle / 2 [0, 2p] has a Fourier expansion of the form
f ðr;/Þ ¼
X

n

ein/fnðrÞ; f nðrÞ ¼ rngnðrÞ;
where the rightmost equation expresses the regularity condition and gn(r) is necessarily itself both even and
smooth [1–3]. Similarly in the spherical case, an expansion in terms of spherical harmonics Y m

l ðcos hÞeim/

where (h, /) are respectively colatitude and longitude implies that the multiplying radial function must be
of the form rlglm(r). Thus in both cases (and for the remainder of this paper) we may speak of the regularity
condition being that fl(r) = rlgl(r) (with gl smooth and even), although the physical interpretation of the
wavenumber l (referring either to polar angle or colatitude) depends on the coordinate system. An immedi-
ate consequence of the regularity condition is that each radial function has a definite parity, a property that
in fact may be derived independently of differentiability by, for example, identifying the point (�r, / + p)
with (r, /) in plane polar coordinates [4]; an analogous result holds in the spherical polar case. Note that
the parity and regularity conditions are neither required nor in general satisfied by any solution on a domain
that excludes the origin.

Any smooth solution of a partial differential equation automatically satisfies the regularity conditions. It
follows that any solution produced by a convergent numerical scheme will also satisfy these conditions, at least
in the limit of infinite truncation and infinite precision. In practice however, highly differentiable solutions will
only be obtained in general with numerical schemes that converge quickly in truncation level, for the impre-
cision caused by the accumulation of roundoff errors will violate the regularity conditions.

Methods based on Chebyshev expansions, both in spectral [5–8] and interpolation [9–12] forms have been
widely used to represent the radial structure, the major advantage being the availability of a fast transform
(FFT). The potential clustering of the associated grid points in physical space close to the origin may be
removed by either expanding over the double interval [�1,1] (rather than [0, 1] with the concomitant halving
of the angular extent) or by exploiting their parity. However, in order to satisfy the regularity conditions at the
origin, the Chebyshev polynomials must effect a perfect cancellation of all monomial terms of the form ri with
i < l. Assuming that the unknown solution has a nonzero projection onto each Chebyshev polynomial (which
might be exponentially small) and noting that each Chebyshev polynomial Tn(r) has a nonzero projection onto
all monomials ri of the same parity and degree i < n, regularity will never be achieved exactly at any given finite
truncation. This therefore raises the question of how much the differentiability of the solution at the origin is
compromised using such a method. One of the aims of this paper, addressed in Section 2, is to tackle this very
question – to determine whether or not such a Chebyshev scheme provides a regular solution, or at least one
that is sufficiently regular. Precisely how regular a solution needs to be to remain physically meaningful will
depend on the problem: for most cases, only the first few derivatives need to be everywhere smooth; for others,
the solution may need to be infinitely differentiable.

In such methods, regularity may be significantly affected by numerical imprecision introduced through the
accumulation of roundoff errors. An important related issue therefore is the speed of convergence of the
numerical scheme. Gottlieb and Orszag [5] claimed that the coordinate singularity degraded the convergence
of Chebyshev methods and that introducing additional ‘‘pole’’ conditions (of the form y 0(0) = 0) speeded up
convergence. In Section 2 we briefly revisit the issue of whether such extra conditions are required with our
implementation.

An alternative method is to expand the unknown function in a radial basis that automatically satisfies all
regularity conditions. The effect of roundoff error or otherwise lack of convergence can never degrade the dif-
ferentiability which is guaranteed to all orders. In addition, the fact that the correct behaviour at the origin is
built into the basis may significantly accelerate global convergence. One natural choice are Bessel (or spherical
Bessel) functions being the radial part of the separable solution to the Helmholtz equation $2f + k2f = 0.
However, Bessel functions are not solutions of a sufficiently singular Sturm–Liouville problem [13,5] and
therefore only achieve algebraic convergence (as attested by [14]). Nevertheless, Bessel functions have been
used successfully in certain applications e.g. [15]. It is worth noting that the same algebraic convergence is also
obtained when using Fourier series on a non-periodic domain [16]. A further option are the Poincaré polyno-
mials, eigenfunctions of the inertial wave equation in 3D [17] although again there is no reason to suspect that
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they would perform any better than Bessel functions. A better choice is to expand in terms of the so-called
one-sided Jacobi polynomials [1] of the form
Gnðr; a; b; lÞ ¼ rlP ða;bÞn ð2r2 � 1Þ:

Jacobi polynomials, P ða;bÞn ðxÞ, of which Chebyshev and Legendre polynomials are familiar examples, are solu-
tions of a singular Sturm–Liouville problem and as such exhibit spectral convergence to sufficiently smooth
solutions in x 2 [�1,1] [5]. Various choices of (a, b) have been suggested in the literature. The so-called Robert
functions, rlTn(r), corresponding to a = b = �1/2, although perhaps an obvious choice are known to be excep-
tionally numerically poorly behaved [1]. Both Verkley [18] and Matsushima and Marcus [19] independently
proposed the parameters a = 0, b = l producing a family of polynomials that are orthogonal with respect
to the weight function w(r) = r. Although this is a natural property, at least in 2D polar coordinates, Worland
[14] pointed out that large oscillations close to r = 1 might lead to poor conditioning and slow convergence.
Worland’s choice of a = �1/2, b = l � 1/2 corresponds to basis functions that oscillate within an asymptoti-
cally uniform envelope as n!1.

Although fast transforms from spectral representation to physical space do exist for Jacobi polynomials
(or indeed any polynomial related by a three-term relation [20]), they are no faster than a standard slow
transform for n less than O(500) due to high overheads (c.f. the fast Legendre transform [21,22]). Thus a
major drawback of such methods is the potentially large computational cost and their usefulness depends
entirely on how their rate of convergence compares with a standard Chebyshev expansion. Should they con-
verge slower as suggested by Mohseni and Colonius [9], then a Chebyshev series might be the preferred
choice although infinite differentiability is not guaranteed. However, should they exhibit superior conver-
gence (as may be expected and indeed as confirmed in Section 3) then they would be ideally suited for prob-
lems where compactness of spectral representation is more important than computational speed, such as
optimisation problems that do not involve timestepping [23,24]. An additional issue is to determine which
choices of (a, b), if any, generate a family Gn that is spectrally convergent. In fact, as we show in Appendix
C, any family of Gn, with a > � 1, b > � 1, converges exponentially fast to functions of the form rlg(r)
where g is even and smooth.

The aim of this paper is to provide a quantified comparison between radial expansions in Chebyshev poly-
nomials and various choices of one-sided Jacobi bases, in order to provide the reader with some guidance as to
which is the optimum choice for any particular case. We benchmark the various methods against the least neg-
ative eigenvalue (and corresponding eigenvector) of Bessel’s equation, an eigenvalue problem stemming from
the 2D Helmholtz equation, rather than solving a multidimensional problem such as the Navier–Stokes equa-
tions in full. Bessel’s equation contains all the crucial ingredients with which we can test the numerical
schemes: the exact solutions are known analytically so it is straightforward to determine convergence, and
as the solutions are everywhere differentiable, reasonable regularity is expected of any numerical
approximation.

We begin in Section 2 by analysing the rate of convergence of a Chebyshev expansion, paying particular
attention to the degree of regularity of the solution at the origin. Although such numerical solutions can never
be infinitely differentiable (as has been already noted), we investigate what effect this lack of differentiability
has on the behaviour of the solutions. In Section 3 we discuss one-sided Jacobi polynomials, detailing the
motivation for the various choices of (a, b), including the choice of Worland only recently appearing in the
literature, and providing a comparison of their convergence with the Chebyshev method of Section 2. We also
investigate how well the different one-sided Jacobi bases resolve boundary layers, and show that the new Wor-
land polynomials are analogous to Chebyshev polynomials in being close to the approximation attaining min-
imum maximum pointwise error (minimax). We conclude with a discussion in Section 4.

2. Expansions in Chebyshev polynomials

We consider solving Bessel’s equation
½Dþ k2�yðrÞ ¼ 0; D ¼ d2

dr2
þ 1

r
d

dr
� l2

r2
; ð1Þ
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with the boundary conditions y(0) = 0, y(1) = 0. The analytic solutions are Jl(kir) where Jl is a Bessel function
of order l and ki is the ith positive root of Jl. These solutions satisfy the regularity conditions, being of the form
rlgl(r) with gl even and smooth.

In order to construct a solution based on Chebyshev polynomials, it is a poor idea to build a prefactor of rl

into the expansion due to severe numerical ill-conditioning especially when l is large [1]. One can, of course,
premultiply by r2 or r depending on whether l is even or odd, thus at least partially building in regularity,
although again even this can lead to numerical problems [6]. Much more successful are expansions exploiting
the parity of y, expanding in one of the two forms
Fig. 1.
odd po
functio
that re
yNðrÞ ¼
Xn¼N

n¼1;l even

bnT 2n�2ðrÞ; yN ðrÞ ¼
Xn¼N

n¼1;l odd

bnT 2n�1ðrÞ;
depending on whether l is an odd or even integer. We may construct a generalised eigenvalue problem by using
a tau method, imposing the orthogonality condition
2

Z 1

0

ð1� r2Þ�1=2T 2i�1ðrÞRNðrÞ ¼ 0; RN ðrÞ ¼ ðDþ k2Þ
X

n

bnT 2n�1; ð2Þ
for each i = 1, 2, . . ., N � 1 and l is here supposed odd. Note that by virtue of construction the boundary con-
dition y(0) = 0 is satisfied automatically; y(1) = 0 is imposed on the last row of the matrix system. We have
exploited parity of both T2n�1(r) and RN to reduce the orthogonality range [�1,1] to [0,1] as the integrand
is even; such integrals may either be computed by fast transform or quadrature. Importantly, although we
work only on [0, 1] the grid points do not cluster near r = 0 and we avoid any concomitant numerical prob-
lems. Such a method is certainly not new and performance for l = 7 is provided in [5] although they report that
the apparently poor convergence is improved if the additional ‘‘pole’’ condition y 0(0) = 0 is implemented,
replacing one of the tau-orthogonality rows of the matrix system. The reported necessity of such supplemen-
tary conditions is, at the very least, somewhat unnerving as of course for functions that are O(rl) as r! 0, all
of the first l � 1 derivatives are similarly zero; if l � 1 > N, we cannot possibly use all the conditions as this
would entail more constraints than unknowns. In attempting to reproduce their results, contrary to their ori-
ginal study, we find that in fact convergence is marginally degraded rather than improved with the addition of
extra boundary conditions. This is demonstrated in Fig. 1 which shows convergence to the least negative
eigenvalue of Bessel’s equation with l = 7 and l = 101. These (and subsequent) calculations were performed
in double precision arithmetic with round-off errors of O(10�14). For any particular truncation, the grey curves
(with the additional pole condition) are of similar or greater error than those without (shown as black).

Thus the Chebyshev polynomials need no assistance from additional pole conditions in converging to the
analytic solution, excellent convergence (within an error of O(10�10)) being achieved both in the eigenvalue
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Convergence to the least negative eigenvalue of Bessel’s equation of order l = 7 and l = 101 using a Chebyshev-tau method with N
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and eigenvector by N = 14 and N = 35 for l = 7 and l = 101 respectively. The latter case is somewhat surpris-
ing, given that we require N > 50 to have any chance of generating a solution that is formally O(r101); for
N = 35 the solution is at most O(r69). There are two conclusions we can draw from this. Firstly, low degree
polynomials can approximate high degree polynomials extremely well (at least in an average sense), as shown
by the convergence of both the eigenvalue and eigenvectors. Secondly, regularity does not automatically fol-
low from convergence: it is impossible that the solution (at least withN = 35) can fulfill the regularity condi-
tions and so, for some k < l, yN(r)/rk is singular at r = 0. The solution yN shows little sign of changing (at least
in its convergence) as N increases from 35, indeed there are signs that the error starts to increase slightly with
truncation (due to the effects of accumulated roundoff error), so it would appear that for no choice of N is a
regular solution attainable.

2.1. Regularity of Chebyshev solutions

Having shown that it is in general difficult to obtain fully regular Chebyshev solutions, it is of interest to
quantify by how much such solutions violate the required conditions; we do this using two different methods.
Firstly, we follow [3] and compute the monomial expansion of the truncated Chebyshev series approximation
to the solution of Bessel’s equation of order l = 21:
Table
Square
approx

N

10
15
20
25
30
31
32
33
35
40
45
50

The bn

column
a comp
absolu
yN ðrÞ ¼
XN

n¼1

bnT 2n�1ðrÞ ¼
X2N�1

i¼0

airi:
We measure the degree of nonregularity by the squared power of the coefficients that lead to a nonregular
solution,

P
i<la

2
i . The intermediate value of l = 21 was chosen to show typical behaviour; in comparison to

Fig. 1, convergence within O(10�10) is achieved by N = 25 for this value of l.
The results are shown in Table 1. In the second column from the left, the squared power in the ‘‘nonreg-

ularity’’ coefficients reaches a minimum at N = 32. The coefficients an in general individually become very
large, as can be seen by comparing with the third column, so to achieve a value as low as 6.523e + 01 a
remarkable degree of cancellation has occurred. Thus the solution is ‘‘most regular’’ at a truncation higher
than that for which the eigenvector and eigenvalue have converged (at N = 25). It is also apparent that the
solution is never fully regular; indeed, as the truncation increases, the nonregularity increases without bound.
A clue for why this occurs may be gleaned from the third and fourth columns, which list respectively the
squared power in all monomial and Chebyshev coefficients as a function of N. Although the Chebyshev series
1
d power of coefficients as a function of N, the total number of odd Chebyshev polynomials used in the Chebyshev-tau
imation to the least negative eigenvalue of Bessel’s equation of order l = 21P

n<21a2
n

Pn¼2N�1
n¼0 a2

n

Pn¼N
n¼1 b2

n

1.238e + 08 1.238e + 08 1.713769
7.557e + 08 1.330e + 10 1.713999
2.277e + 10 6.668e + 12 1.713999
9.315e + 05 3.838e + 14 1.713999
1.322e + 04 7.517e + 14 1.713999
7.217e + 02 9.307e + 14 1.713999
6.523e + 01 1.100e + 15 1.713999
2.064e + 03 8.266e + 16 1.713999
4.174e + 04 1.790e + 20 1.713999
3.125e + 05 3.205e + 27 1.713999
2.499e + 09 2.331e + 35 1.713999
6.530e + 11 1.381e + 43 1.713999

are the coefficients of T2n�1(r), and an are the coefficients of rn (which are incidentally 0 when n is even in this case). The second
shows the squared power in the ‘‘nonregularity coefficients’’ giving rise to the singularity of some derivative at r = 0; the third gives

arison with the total squared power of the monomial coefficients and the fourth the sum of the squared Chebyshev coefficients. The
te error in both the eigenvalue and eigenvector is O(10�10) for N P 25.



1214 P.W. Livermore et al. / Journal of Computational Physics 227 (2007) 1209–1224
converges quickly (so that the coefficients fall off exponentially), due to numerical imprecision (even in double
precision) the magnitude of the bn will fall no lower than O(10�14). At the same time, the monomial coefficients
of T2n�1(r), when n is large, become increasingly significant; for example, the largest coefficients of T49(r) are
O(1017). It follows that at large truncations there is great deal of numerical ‘‘noise’’ that prevents the mono-
mial coefficients from converging and the solution from becoming regular.

However, all that we can conclude from this type of analysis is that the solution is never formally regular,
there is no indication of how bad the nonregularity actually is. For example, it is impossible to say whether or
not the lowest order Cartesian derivative to become singular is its second or tenth. To discriminate between
these cases, Fig. 2 shows the power |an| as a function of n, for the truncations N = 32 and N = 10. Somewhat
reassuringly, the spectra are shaped as to minimise the monomial coefficients at small n, and hence to maxi-
mise the regularity of the function. Indeed, as the truncation is increased from N = 10 to N = 32, the magni-
tude of the coefficients for n 6 5 drops from O(1) to O(10�10) indicating that we might expect only a ‘‘weak’’
singularity at the origin in the first five Cartesian derivatives in this latter case. It is clear that attaining a con-
verged solution is essential for any kind of regular behaviour.

A more direct method is to compute numerically the error in the various contributions to the Cartesian
derivatives. In plane polar coordinates (r, /),
Fig. 2.
trunca
o

ox
¼ cos /

o

or
� sin /

r
o

o/
;

o

oy
¼ sin /

o

or
þ cos /

r
o

o/
;

and it is clear that for any function f, the computation of its kth order Cartesian derivatives requires the accu-

rate calculation of terms of the form r�j o

or

� �k�j

f , j = 0, . . ., k. For our Bessel function benchmark, we quan-

tify the error in two representative terms Qk(r) = |yN(r) � y(r)|/rk and DkðrÞ ¼j
d

dr
ðyNðrÞ � yðrÞÞ j =rk�1, where

y(r) is the analytic solution.
The integer k < l is in general chosen to be of physical significance. For example, if y represents tempera-

ture, then we might expect that not only y but also its first order Cartesian derivatives should be well behaved
– thus both Q1(r) and D1(r) should be small everywhere, including arbitrarily close to r = 0. If yN has any non-
zero constant in its Chebyshev expansion, then Q1(r) will be singular at r = 0. However, by using an odd
Chebyshev expansion (if l is odd) then this is avoided and the solution is sufficiently regular to be physically
meaningful. Perhaps a more useful example is that of solving the incompressible Navier–Stokes equations in a
spherical geometry, in which one may express the unknown velocity field u in terms of poloidal and toroidal
components [25]:
u ¼ $� $� ½sðr; h;/Þr̂� þ $� ½tðr; h;/Þr�;

where r̂ is the unit vector in the radial direction. If the scalar field s is expanded in terms of spherical harmonicsP

Y m
l ðh;/Þsm

l ðrÞ (and similarly for t), then for example, the radial and latitudinal components of velocity are
given by
−16
−14
−12
−10

−8
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−2
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Spectrum of the monomial coefficients, |an|, of the numerical solution to the leading eigenvector of Bessel’s equation of order 21 for
tions N = 32 and N = 10. Low values of |an| for small n indicate only ‘‘weak’’ singularities of the first few Cartesian derivatives.



Table 2
Behaviour of the numerical solution to the leading eigenfunction yN of Bessel’s equation of order l = 7 and l = 101 close to the origin as a
function of N, the total number of odd Chebyshev polynomials used

N l = 21 l = 101

log10 Q3(10�2) log10 Q3(10�3) log10 Q3(10�2) log10 Q3(10�3) log10 D3(10�3)

10 1.61 3.62 2.45 4.46 4.46
15 �0.97 1.04 0.18 2.19 2.19
20 �3.83 �1.80 �0.04 1.99 1.99
25 �7.69 �5.64 �2.20 �0.15 �0.15
30 �11.1 �8.73 �4.47 �2.38 �2.39
35 �9.69 �7.66 �6.45 �4.34 �4.34
40 �10.6 �8.41 �9.02 �6.91 �6.91
45 �9.97 �8.00 �10.4 �8.62 �8.46
50 �9.61 �7.46 �10.1 �8.15 �8.06

Qk(r) = |yN(r) � y(r)|/rk where y(r) is the analytic solution and DkðrÞ ¼ j d
dr ðyN ðrÞ � yðrÞÞj=rk�1. In all cases y(r) has a zero of order l at

r = 0; Qk(r) and Dk(r) therefore provide measures of how singular the numerical solution is as r! 0. To achieve a satisfactorily
nonsingular solution at r = 10�3 with k = 3, we require N = 20 for l = 21 and N = 35 for l = 101.
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ur ¼
X
l;m

lðlþ 1Þsm
l Y m

l

r2
; uh ¼

X
l;m

1

r
dsm

l

dr
oY m

l

oh
þ tm

l

r sin h
oY m

l

o/
:

A reasonable demand of the numerical solution might be that u is everywhere well defined; it follows that the
analogous condition in our test case is that both Q2(r) and D2(r) should be small as r! 0; indeed, if the vor-
ticity is required to be physically meaningful then Q3(r) and D3(r) should also be small. In the preceding dis-
cussion, we have already made the point that that evaluation of Q3(r) is in general impossible at the origin, for
the Chebyshev series will have nonzero (though possibly tiny) coefficients ri with i < 3, rendering Q3(r) for-
mally singular. At best, we might hope to replace Q3(0) by Q3(r) for r sufficiently close to zero to remain a
consistent representation.

Table 2 shows the error in evaluating yN/r3 (denoted by Q3(r)) and a related derivative (denoted by D3(r))
close to the origin for the case of our Chebyshev approximation to the leading eigenvector of Bessel’s equation
of orders l = 21 and l = 101. We tabulate log10 Q3(r) as a function of the truncation N used for r = 10�2 and
r = 10�3, these radial values being close enough to r = 0 to represent the behaviour at the origin in a reason-
able way. In order to get a solution that is ‘‘regular enough’’, that is, for which Q3 is (say) O(10�3), one
requires N = 30–40 for l = 101 for the two choices of r. Thus if one is prepared to approximate the solution
at r = 0 by the solution at r = 10�3, then sufficiently regular solutions can be obtained by moderate truncation
levels. Notice also that for the values indicated in the table, D3(r) closely approximates Q3(r); thus the error
from the related contributions to the Cartesian derivatives are comparable. Note also that the accuracy of
yN/rk does not increase monotonically with N: for large truncation levels, the accuracy becomes degraded
due to the effects of accumulated roundoff error. Additionally, as k gets larger the value of r for which
Qk(r) is smaller than any prescribed threshold increases. Thus as the demands of regularity on the solution
increase, the region r � rc inside which we are unable to compute a solution accurately will grow large enough
to prevent the approximation of yN(0) by any yN(r). Thus although a Chebyshev method may be able to meet
mild regularity conditions, more stringent demands, for instance, Qk(10�3)� 1 with k > 3, will be out of
reach. It is also noteworthy that even a slightly under resolved solution may exhibit strongly nonregular
behaviour. For example, Fig. 1 shows that when l = 101 an error in the eigenvalue of magnitude O(10�3) is
obtained when N = 20 (indicating a marginally converged solution), but Table 2 indicates than an error of
O(102) can occur when evaluating derivatives at r = 10�3.

3. One-sided Jacobi polynomials

A parameterised family of polynomials that span functions of the form rlg(r) where g(r) is smooth and even
may be written
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Gnðr; a; b; lÞ ¼ rlP ða;bÞn ð2r2 � 1Þ;

where P ða;bÞn ðxÞ is a Jacobi polynomial [26]. Jacobi polynomials are solutions of a singular Sturm–Liouville
problem, and as such not only are they orthonormal (when appropriately normalised):
Z 1

�1

ð1� xÞað1þ xÞbP ða;bÞn ðxÞP ða;bÞm ðxÞdx ¼ dnm; ð3Þ
but are also exponentially convergent to any sufficiently smooth function [5,13]. Under the change of coordi-
nate x = 2r2 � 1 that maps the domain [�1,1] to [0,1] and renders P ða;bÞn ð2r2 � 1Þ an even polynomial, under an
appropriate normalisation the Gn are orthonormal with weight function w(r):
Z 1

0

GnGmwðrÞdr ¼ dnm; wðr; a; b; lÞ ¼ ð1� r2Þar2ðb�lÞþ1: ð4Þ
Various choices of the parameters have been made in the existing literature. We have already described in Sec-
tion 2 the so-called Robert functions, rlTn(r), which correspond to the parameters a = b = �1/2 and are
orthogonal with weight function w(r) = (1 � r2)�1/2r�2l. What makes this basis so ill conditioned is the fact
that the polynomials are zero over almost all the interval [0,1]; since rl � exp(�l(1 � r)) for r � 1, each poly-
nomial decays exponentially away from r = 1. Close to r = 1 where the functions are large, the low degree
Chebyshev polynomials are numerically almost linearly dependent [1]. Another way of expressing the failure
of the formal orthogonality to create a well conditioned scheme is to note that when l� 1, the weight function
w(r) weights most heavily the part of the interval closest to r = 0 where the functions themselves are tiny. Thus
the orthogonality provides little constraint for the part of the functions that dominates on [0, 1]. In a typical
calculation, such numerical ill-conditioning is manifested in extremely large basis coefficients when represent-
ing a function that is O(1) for most of the interval. The coefficients necessarily must be large since the basis
functions themselves are small away from r = 1, but must effect a near perfect cancellation for the solution
to remain O(1) at r = 1. This discussion motivates us to suggest a weight function that is at most only mildly
singular at r = 0; thus b must increase with l.

The independent studies of both Verkley [18] and Matsushima and Marcus [19] used a = 0, b = l (although
note the different definition of the parameters in [19]). This leads to the weight function w(r) = r, a natural
choice in plane polar coordinates. For brevity, we will refer to these as Verkley polynomials in the remainder
of the paper. Note that the equivalent weight function in a spherical geometry, that of w(r) = r2, would be
obtained by a = 0, b = l + 1/2.

Fig. 3 shows plots of Verkley polynomials as solid lines for various choices of n and l. It is clear that there is
a large jump in the amplitude of the oscillations close to r = 1 for large n. It was suggested by Worland [14]
that such polynomials might be mildly ill-conditioned, particularly when representing boundary layers, and he
suggested the different choice of a = �1/2, b = l � 1/2. The associated weight function is w(r) = (1 � r2)�1/2,
the same as that for Chebyshev polynomials (although only over [0,1]). These parameters generate a family of
polynomials (shown by the dashed curves in Fig. 3) for which oscillations are asymptotically (as n!1) con-
tained within a uniform envelope. The motivation for this choice of (a, b) is not immediately obvious and a
derivation is given in Appendix A. Some examples of Worland and Verkley polynomials for low l and n are
given in Table 3, normalised to unity at r = 1. Adopting this normalisation, the definition of the Worland
polynomials is then
W l
nðrÞ ¼

22nðn!Þ2

ð2nÞ! rlP ð�1=2;l�1=2Þ
n ð2r2 � 1Þ; ð5Þ
with orthogonality relation
Z 1

0

ð1� r2Þ�1=2W l
nW l

m dr ¼ hndnm; hn ¼
pðnþ lÞ

22lþ1ð2nþ lÞ
ð2nþ 2lÞ!½n!�2

½ðnþ lÞ!�2ð2nÞ!
; ð6Þ
where P ða;bÞn follows the standard normalisation as in [26]. The Verkley polynomials are
V l
nðrÞ ¼ rlP ð0;lÞn ð2r2 � 1Þ; ð7Þ
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Fig. 3. Comparison plots of Verkley polynomials (shown by the solid lines) and Worland polynomials (shown by the dashed lines); each
curve is normalised to attain 1 at r = 1. (a) l = 2; n = 3; (b) l = 2, n = 6; (c) l = 20, n = 30; and (d) l = 30, n = 40. The Worland polynomials
show asymptotically uniformly modulated oscillations as n!1; the Verkley polynomials show a jump in modulation near r = 1.

Table 3
Verkley and Worland polynomials for l = 2,3 and n = 0,1,2, normalised equal to unity at r = 1

n Verkley polynomials Worland polynomials

l = 2 l = 3 l = 2 l = 3

0 r2 r3 r2 r3

1 r2(4r2 � 3) r3(5r2 � 4) r2(6r2 � 5) r3(8r2 � 7)
2 r2(15r4 � 20r2 + 6) r3(21r4 � 30r2 + 10) 1

3 r2ð80r4 � 112r2 þ 35Þ r3(40r4 � 60r2 + 21)
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with orthogonality relation
Z 1

0

V l
nV l

mr dr ¼ hndnm; hn ¼
1

4nþ 2lþ 2
: ð8Þ
The efficient computation of general one-sided Jacobi polynomials is discussed in Appendix B.
Lastly, it is perhaps not obvious that the one-sided Jacobi basis inherits the spectrally convergent property

of the Jacobi polynomials on which they are based. We provide a proof in Appendix C.

3.1. Convergence

We now investigate the convergence of the Verkley and Worland polynomials in solving Bessel’s equation
(Eq. (1)) of order l = 7 and l = 101. After expanding the unknown solution in N polynomials,
yN ¼
XN�1

n¼0

anGnðr; a; b; lÞ;
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we may determine a system of equations for the coefficients in two ways: tau or collocation. To implement the
tau method, we impose orthogonality of the residual RN in the analogue of Eq. (2) to each appropriate Gn

(with suitable weight function). Numerically, this may be achieved by a quadrature method (Gauss–Legendre
in the Verkley case and Gauss–Chebyshev in the Worland case, reflecting the form of the weight
function) using some minimum number M of abscissae. In either case, GnDGm is a polynomial (if l P 1) of
degree at most 2(l + 2(N � 1)) � 2 = 2l + 4N � 6 (if n,m 6 N � 1) and including the weight function may
be integrated exactly using M abscissae where M P l + 2N � 2. In order to project a nonlinear term back onto
the basis, the standard use of a transform to convert between physical and spectral space would require the
same radial grid for all values of l. We would then be restricted by the highest degree integrand, requiring
M = O(3Lmax/2 + 3N) abscissae, where Lmax is the largest value of l [18]. In a typical application with
Lmax = 200 and N = 40, this slow transform involves multiplication by a matrix of approximate side 420,
potentially crippling for a timestepping problem.

An alternative is to adopt a collocation scheme, whereby we impose RN(ri) = 0 on a discrete grid {ri}. The
grid points, ri, are usually chosen to be identical to the associated quadrature points of the related tau scheme
(thus rendering both methods equivalent) [1]. In this case however there are more quadrature points than
unknown polynomial coefficients (since M P l + 2N � 2 > N in general) and no collocation method will be
equivalent to a tau scheme. Motivated by the quadrature method, we may choose ri to be the first N � 1 zeros
of GN. As mentioned above, to project an unknown (for example nonlinear) function back onto the basis will
in general require the same grid points for all l; thus these l-dependent collocation points would not be appli-
cable in such a case. However, in view of the above discussion, the choice of collocation points is somewhat
arbitrary and we may consider instead the first N � 1 zeros of GN�1(r; a, b, Lmax) rendering the collocation
points independent of l, a choice that Worland [14] actually showed to be preferable. We additionally note
that in this case the slow transform between physical and spectral space would be considerably faster than
the quadrature methods described above, although still of complexity O(N2).

Fig. 4 shows analogous plots to Fig. 1, depicting the convergence to the least negative eigenvalue of Bessel’s
equation for both tau (solid line with circles) and collocation (dashed line with squares) methods. The tau
methods converge faster than the collocation schemes (as perhaps may be expected), and there is some evi-
dence that the Verkley polynomials converge faster than the Worland polynomials although there is little
to choose between them. The apparent floor on the error of O(10�10) in the l = 101 case, for example, is
due to numerical imprecision (in double precision); the solid lines with no symbols show an identical tau-
method calculation but performed in Maple at much higher precision and are not bounded from below.
The rms error in the eigenvectors shows almost no deviation between the various schemes (not shown).

It is noteworthy when comparing Figs. 1 and 4, for any particular error tolerance, that both the one-sided
Jacobi bases shown require a lower truncation (with the tau scheme) than the Chebyshev scheme. In partic-
ular, for l = 101, both the Verkley and Worland schemes achieve an absolute error of less than 10�6 with just
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Fig. 4. Convergence to the least negative eigenvalue of Bessel’s equation of order l = 7 and l = 101 using N polynomials of either Worland
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P.W. Livermore et al. / Journal of Computational Physics 227 (2007) 1209–1224 1219
17 polynomials. The same problem solved using Chebyshev polynomials required N = 28, roughly 1.5 times as
many. Thus the one-sided Jacobi polynomials converge faster and offer a much more concise representation of
the solution than Chebyshev polynomials. When using collocation, the Jacobi method achieves a similar accu-
racy to the Chebyshev scheme using roughly the same number of polynomials [9].

3.2. Minimax representation

One common method of function approximation is that of least squares; it is well known that the truncated
Legendre and Chebyshev expansions of a function f(r) up to degree N correspond to the polynomial of degree
N, KN say, that minimises the integrated weighted squared error over [�1,1] with weight function w(x) = 1 and
w(x) = (1 � x2)�1/2 respectively [27]. For instance, we may determine
min

Z 1

�1

ðf ðxÞ � KN ðxÞÞ2 dx; KN ðxÞ ¼
XN

0

anP nðxÞ;
where the minimisation is taken over all polynomials of degree N that, without loss of generality, may be writ-
ten in terms of the spanning set of Legendre polynomials, Pn. Taking partial derivatives with respect to each of
the coefficients ai in turn leads to the result that
an ¼
Z 1

�1

f ðxÞP nðxÞdx:
Analogously, it follows that the truncated expansion of a function f(r) = rlg(r) (with g even and smooth) in
terms of any family Gn(r; a, b,l) up to degree N minimises the integrated squared error between f and any poly-
nomial BN(r) = rlh(r) where h is an even polynomial
Z 1

0

wðrÞðf ðrÞ � BN ðrÞÞ2 dr;
with respect to the appropriate weight function (from Eq. (4)). Thus in this precise sense, any choice of (a, b)
produces a family Gn that results in an optimal expansion of f.

A second method of approximation is to find the so-called minimax polynomial, MN(x), the polynomial of
degree N that minimises the maximum pointwise error over the domain [27]. However, this is in general a sub-
stantially more difficult formulation than weighted least squares and there is no known algorithm for finding
MN. However, if MN can be found it can be shown that the error e(r) = f(r) �MN(r) must oscillate uniformly
over the required interval [27]. Thus if we attempt an expansion of an arbitrary function f in terms of Cheby-
shev polynomials,
f ðrÞ ¼
XN

n¼0

bnT nðrÞ; ð9Þ
the error would be largely given by the first excluded term, TN+1(r), which does oscillate uniformly. A Cheby-
shev expansion therefore is known to be close to the minimax polynomial approximation of a function.

Given that Worland polynomials oscillate within an asymptotically uniform envelope, it is tempting to
draw some analogy to the minimax property of the Chebyshev polynomials. Although we provide no proof,
by applying Eq. (9) it seems likely that the Worland polynomial projection is a good approximation to the
minimax polynomial. We demonstrate this by considering the error in the projection of the boundary layer
function f(r) = r20 exp(20(1 � r2)) on both the Worland (black) and Verkley (grey) polynomials, as shown
in Fig. 5(a). It is clear that although the error in the Verkley projection is smaller in the interior, the Worland
polynomials do a far better job close to the boundary. Indeed, over the domain the Worland projection
achieves a smaller maximum error than the Verkley case.

The large jump in the oscillation amplitude of the Verkley polynomials close to r = 1, a property shared by
the Legendre polynomials, merits further discussion (see also Appendix A). In the Legendre case, the jump is
associated with degraded (although still exponential) convergence; compared to Chebyshev polynomials, the
coefficients are O(N1/2) larger in magnitude [1]. However, as Fig. 5(b) shows, the Verkley polynomials con-



Fig. 5. Projection of the boundary layer function r20 exp(20(r2 � 1)) onto orthonormal Verkley (grey) and Worland (black) polynomials
Gn(r; a, b, 20). (a) The pointwise error for expansions truncated with 10 polynomials, the inset shows a magnification of the interval
[0.9, 1]; (b) the spectral power as a function of degree. Although the Verkley coefficients are smaller in magnitude than those for Worland,
the two rates of convergence are essentially the same. The maximum error is larger for the Verkley projection; the Worland projection
looks close to the minimax case as the error is almost uniformly oscillating.
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verge at the same rate as the Worland polynomials (indeed, their coefficients are actually smaller by an
approximately constant factor) and so the behaviour close to r = 1 has no analogous degrading effect on
the global convergence.

4. Discussion

In this paper, we considered two different spectral methods for representing functions of radius in a planar
or spherical polar geometry that includes the origin: Chebyshev series of definite parity and one-sided Jacobi
polynomials. Crucially, the regularity conditions yielding solutions that are everywhere infinitely differentiable
are not in general satisfied by Chebyshev methods (in finite precision), but are satisfied explicitly (by construc-
tion) when using one-sided Jacobi polynomials. However, the availability of a fast transform may swing the
balance in favour of Chebyshev methods and there is clearly a tradeoff between regularity and computational
speed between the two approaches.

We discussed in some detail the problems associated with evaluating a numerically derived Chebyshev
expansion close to the origin. For instance, it is not possible to evaluate the limit yN/r as r! 0 (and there-
fore compute its first order Cartesian derivatives at r = 0) even if the numerical solution yN approximates a
function that is O(r2), due to the fact yN will have a constant term that is not precisely zero (although it may
be at the limit of numerical roundoff). Thus we are resigned to approximating the solution at the origin by
the solution at some r = r0 close by. The question is whether such a point, being sufficiently close to the
origin to remain consistent, yet sufficiently far away to avoid the singularity, can be found. In general,
we seek such a point for which yN ðr0Þ=rk

0 for k P 1 is accurate, this being necessary for the first k Cartesian
derivatives to be well defined close to the origin; the positive integer k is defined by the physics of the prob-
lem. In fact, we showed in Section 2 that this is in general possible; for example, it is reasonably straight-
forward to generate solutions yN(r0) such that yN ðr0Þ=r3

0 is accurate for values r0 P 10�3 provided it is
adequately converged. Thus if one is willing to approximate the solution at the origin by the solution at
r = 10�3 then sufficient regularity is in general obtainable. However, it is worthwhile adding a comment
on real-life problems where codes may be run at relatively extreme parameter values. If for whatever reason
the solution is not fully converged then it is unlikely that any kind of regularity is assured. Table 2 shows
that even if the solution is marginally under resolved, that it may be impossible to evaluate the solution and
required derivatives accurately close to the origin.

The parameterised family of one-sided Jacobi polynomials give an extremely concise spectral representation
and any solution using such an expansion, even if not fully converged, is automatically regular at the origin
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and differentiable to all orders. Of the infinite set of specifying parameters (a, b), we compared two such
choices generating the Verkley and Worland polynomials, and found that they behave similarly and converge
much faster than an expansion in standard Chebyshev polynomials. We argued that a truncated expansion in
Worland polynomials is close to the minimax polynomial (being analogous to the Chebyshev polynomials),
that of minimising the maximum pointwise error over the interval. The major drawback of such methods how-
ever is the lack of a competitive fast transform, degrading their efficiency when performing nonlinear
transforms.

We now return to the main point of the paper, to offer a recommendation to the reader as to which method
to choose for any particular application. It is clear that some tradeoff must be made between the speed of com-
puting Chebyshev transforms and the accuracy of the one-sided Jacobi polynomials. If the problem involves
repeated nonlinear transforms between spectral and physical space, for example when timestepping the
Navier–Stokes equations, and provided that the solution is sufficiently converged (which may well limit the
parameter values available), then a Chebyshev method is probably preferable. However, the Cheyshev method
has a serious potential pitfall for the unwary. A frequently adopted practice is to choose the truncation level
adopted on the basis of the convergence of global quantities such as an eigenvalue in a linear problem or the
energy in a nonlinear problem. This is an inadequate method of proceeding if quantities such as vorticity are
needed, as these involve derivatives and division by powers of r that may produce large errors near the origin.
While these difficulties can be overcome by using more polynomials, a conservative approach to deciding on
truncation levels is strongly recommended. For other problems where conciseness of representation and reg-
ularity are more pressing, then the one-sided Jacobi polynomials are the obvious choice. Of the two families
studied in this paper, both the Worland and Verkley polynomials are excellent such choices and there is little
in practice to choose between them.

Appendix A. Worland polynomials: WKBJ motivation

In this section we show that the one-sided Jacobi polynomials Gnðr; a; b; lÞ ¼ rlP ða;bÞn ð2r2 � 1Þ oscillate
within an asymptotically uniform envelope (as n!1) if we choose the parameters a = �1/2, b = l � 1/2.

Jacobi polynomials themselves yðxÞ ¼ P ða;bÞn ðxÞ satisfy the following differential equation
ð1� x2Þy 00ðxÞ þ ½b� a� ðaþ bþ 2Þx�y 0ðxÞ þ nðnþ aþ bþ 1ÞyðxÞ ¼ 0: ðA:1Þ

We shall look for a solution of the form [28]
yðxÞ ¼ AðxÞ exp
i
R

kðxÞdx
�

� �
;

for large n ¼ n̂=�� 1 where �� 1, and seek constraints on (a, b) such that rly(2r2 � 1) oscillates with uniform
amplitude, that is, rlA(2r2 � 1) = 1. It follows that
y0ðxÞ ¼ A0 þ ikA
�

� �
exp

i
R

kðxÞdx
�

� �
;

y00ðxÞ ¼ A00 þ 2ikA0

�
þ ik0A

�
� k2A

�2

� �
exp

i
R

kðxÞdx
�

� �
:

ðA:2Þ
On substituting these into Eq. (A.1) we obtain at O(��2)
kðxÞ ¼ n̂ð1� x2Þ�1=2
;

(up to sign), yielding the expected ever more frequent oscillations as x! ± 1. At O(��1) we find
ð1� x2Þð2ikA0 þ ik0AÞ þ ½b� a� ðaþ bþ 2Þx�ikAþ n̂ðaþ bþ 1ÞA ¼ 0:
After some algebra, the solution may be written
AðxÞ ¼ Cð1� xÞ�ð2aþ1Þ=4ð1þ xÞ�ð2bþ1Þ=4 exp i
ðaþ bþ 1Þ

2
cos�1 x

� �
;
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and so
jAð2r2 � 1Þj ¼ Dð1� r2Þ�ð2aþ1Þ=4r�ð2bþ1Þ=2; ðA:3Þ
with C and D unknown constants. It follows that in order for |rlA(2r2 � 1)| = 1 that we must choose a = �1/2
and b = l � 1/2. Thus as n!1 the Worland polynomials oscillate with an increasingly uniform amplitude; in
particular, the bulk of their oscillations close to r = 1 become bounded by a uniform envelope. Note that the
Verkley choice, a = 0, leads to a mild singularity in the envelope as r! 1, giving rise to the behaviour there
seen in Figs. 3 and 5.

It is noteworthy that although the Worland polynomials oscillate asymptotically uniformly as n!1, they
can never be obtained by a scaled stretched Chebyshev polynomial (as would be required to make use of the
fast cosine transform). That is, it is not possible to represent
Gnðr;�1=2; l� 1=2; lÞ ¼ SðrÞT 2nðf ðrÞÞ;
where the stretching function f(r) is a bijective map: [0,1]! [�1,1] and S(r) provides the (non uniform) mod-
ulation of the uniform Chebyshev oscillations. This is because f would have to map the zeros of the Chebyshev
polynomials (of multiplicity one) to the zeros of the Gn (of which r = 0 is a zero of multiplicity l). Thus f can-
not be bijective.

Appendix B. Computation of one-sided Jacobi polynomials and their derivatives

In this section we introduce a general method of stably computing the one-sided Jacobi polynomials
Gnðr; a; b; lÞ ¼ rlP ða;bÞn ð2r2 � 1Þ with their derivatives, supplementing those given in [18,19]. The Jacobi polyno-
mials themselves are simply computed by the three term recurrence:
a1P ða;bÞnþ1 ðxÞ ¼ ða2 þ xa3ÞP ða;bÞn ðxÞ � a4P ða;bÞn�1 ðxÞ; ðB:1Þ
where a1, a2, a3, a4 are functions of a, b and n [26], along the starting values
P ða;bÞ0 ðxÞ ¼ 1; P ða;bÞ1 ðxÞ ¼ 1

2
½ða� bÞ þ ðaþ bþ 2Þx�: ðB:2Þ
However, the standard recurrence relations for their derivatives are singular at r = 1, and although limiting
forms can be used on the boundary, we show that this difficulty can be sidestepped by exploiting the relation-
ship with the Hypergeometric function.

Before doing so however, we note in passing that it is possible, at least in theory, to compute the polyno-
mials by using an iterative Gram–Schmidt procedure. By writing Gn ¼

Pn
i¼0airlþ2i and assuming that

{Gn+1} [ {G0, G1, . . ., Gn} form an orthonormal basis, the coefficients ai can be found. However, this process
is numerically poorly conditioned, as the coefficients quickly become unmanageably large. For example, the
largest monomial coefficient in G16(r; �1/2, 19/2, 10) is O(1013) even though the polynomial itself is O(1). Thus
almost exact cancellation must take place between the monomial terms, a recipe for numerical disaster.

Jacobi polynomials are related to the Hypergeometric function F in the following way:
n!

ðaþ 1Þn
P ða;bÞn ð1� 2zÞ ¼ F ð�n; aþ bþ 1þ n; aþ 1; zÞ; ðB:3Þ
where (x)n = (x)(x + 1)(x + 2) 	 	 	 (x + n � 1) is the Pochhammer symbol [26].
Direct computation of F itself is rather inaccurate (e.g. by using the routines in [29]), but by making use of
d

dz
F ða; b; c; zÞ ¼ ab

c
F ðaþ 1; bþ 1; cþ 1; zÞ; ðB:4Þ

d2

dz2
F ða; b; c; zÞ ¼ aðaþ 1Þbðbþ 1Þ

cðcþ 1Þ F ðaþ 2; bþ 2; cþ 2; zÞ; ðB:5Þ
it is straightforward to show that
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d

dz
P ða;bÞn ð1� 2zÞ ¼ �ðnþ aþ bþ 1ÞP ðaþ1;bþ1Þ

n�1 ð1� 2zÞ;

d2

dz2
P ða;bÞn ð1� 2zÞ ¼ ðnþ aþ bþ 1Þðnþ aþ bþ 2ÞP ðaþ2;bþ2Þ

n�2 ð1� 2zÞ:
ðB:6Þ
It follows by substituting 1 � 2z = 2r2 � 1 that
d

dr
P ða;bÞn ð2r2 � 1Þ ¼ 2rðnþ aþ bþ 1ÞP ðaþ1;bþ1Þ

n�1 ð2r2 � 1Þ;

d2

dr2
P ða;bÞn ð2r2 � 1Þ ¼ 4r2ðnþ aþ bþ 1Þðnþ aþ bþ 2ÞP ðaþ2;bþ2Þ

n�2 ð2r2 � 1Þ

þ 2ðnþ aþ bþ 1ÞP ðaþ1;bþ1Þ
n�1 ð2r2 � 1Þ;

ðB:7Þ
and the derivatives of rlP ða;bÞn ð2r2 � 1Þ follow easily.

Appendix C. Spectral convergence of the one-sided Jacobi polynomials

Although the one-sided Jacobi polynomials
Gnðr; a; b; lÞ ¼ rlP ða;bÞn ð2r2 � 1Þ;

where 0 6 r 6 1 are based on the standard Jacobi polynomials, P ða;bÞn ðxÞ, it is not immediately apparent that the
property of spectral convergence is inherited from them. By spectral convergence, we mean that in the expan-
sion of any sufficiently smooth function f(x) defined on [�1,1],
f ðxÞ ¼
Xn¼1
n¼0

anP ða;bÞn ðxÞ;
that the coefficients an decay asymptotically faster than any algebraic power of n [1,13]. That is, an = O(n�k)
for any integer k as n!1. The choices of a and b are restricted to the interval (�1,1), a property inherent in
the definition of the Jacobi polynomials themselves [26].

The key aspect here for the one-sided Jacobi basis is that we are not trying to approximate an arbitrary
function, but one of the form rlg(r) with g both even and smooth. If we make the change of variable
x = 2r2 � 1, �1 6 x 6 1, then from the above relation we may expand the function g(r(x)) in terms of Jacobi
polynomials, or equivalently
gðrÞ ¼
Xn¼1
n¼0

anP ða;bÞn ð2r2 � 1Þ;
where spectral convergence is guaranteed. By multiplying both sides by rl, it is immediate that
rlgðrÞ ¼
Xn¼1
n¼0

anGnðr; a; b; lÞ;
which exhibits the required spectral convergence.
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